Hard Loss of Stability in Painlevé-2 Equation

نویسندگان

  • O M KISELEV
  • O M Kiselev
چکیده

A special asymptotic solution of the Painlevé-2 equation with small parameter is studied. This solution has a critical point t∗ corresponding to a bifurcation phenomenon. When t < t∗ the constructed solution varies slowly and when t > t∗ the solution oscillates very fast. We investigate the transitional layer in detail and obtain a smooth asymptotic solution, using a sequence of scaling and matching procedures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Painlevé test and the first Painlevé hierarchy

Starting from the first Painlevé equation, Painlevé type equations of higher order are obtained by using the singular point analysis.

متن کامل

On an Isomonodromy Deformation Equation without the Painlevé Property

Abstract. We show that the fourth-order nonlinear ODE which controls the pole dynamics in the general solution of equation P 2 I compatible with the KdV equation exhibits two remarkable properties: (1) it governs the isomonodromy deformations of a 2× 2 matrix linear ODE with polynomial coefficients, and (2) it does not possess the Painlevé property. We also study the properties of the Riemann–H...

متن کامل

On the Solution of a Painlevé III Equation

In a 1977 paper of McCoy, Tracy and Wu [2] there appeared for the first time the solution of a Painlevé equation in terms of Fredholm determinants of integral operators. Specifically, it was shown that a one-parameter family of solutions of the equation ψ ′′ (t) + t −1 ψ ′ (t) = 1 2 sinh 2ψ + 2α t −1 sinh ψ, (1) a special case of the Painlevé III equation, is given by ψ(t) =

متن کامل

Free vibrations analysis of a sandwich rectangular plate with electrorheological fluid core

In this paper, a rectangular sandwich plate with a constrained layer and an electrorheological (ER) fluid core is investigated. The rectangular plate is covered an ER fluid core and a constraining layer to improve the stability of the system. The two outer layers of the sandwich structure are elastic. The viscoelastic materials express the middle layer behavior under electric field and small st...

متن کامل

Quantizing the Bäcklund transformations of Painlevé equations and the quantum discrete Painlevé VI equation

Based on the works by Kajiwara, Noumi and Yamada, we propose a canonically quantized version of the rational Weyl group representation which originally arose as “symmetries” or the Bäcklund transformations in Painlevé equations. We thereby propose a quantization of discrete Painlevé VI equation as a discrete Hamiltonian flow commuting with the action of W (D (1) 4 ). 1

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001